170 research outputs found

    A refinement of Bennett's inequality with applications to portfolio optimization

    Full text link
    A refinement of Bennett's inequality is introduced which is strictly tighter than the classical bound. The new bound establishes the convergence of the average of independent random variables to its expected value. It also carefully exploits information about the potentially heterogeneous mean, variance, and ceiling of each random variable. The bound is strictly sharper in the homogeneous setting and very often significantly sharper in the heterogeneous setting. The improved convergence rates are obtained by leveraging Lambert's W function. We apply the new bound in a portfolio optimization setting to allocate a budget across investments with heterogeneous returns

    Frank-Wolfe Algorithms for Saddle Point Problems

    Full text link
    We extend the Frank-Wolfe (FW) optimization algorithm to solve constrained smooth convex-concave saddle point (SP) problems. Remarkably, the method only requires access to linear minimization oracles. Leveraging recent advances in FW optimization, we provide the first proof of convergence of a FW-type saddle point solver over polytopes, thereby partially answering a 30 year-old conjecture. We also survey other convergence results and highlight gaps in the theoretical underpinnings of FW-style algorithms. Motivating applications without known efficient alternatives are explored through structured prediction with combinatorial penalties as well as games over matching polytopes involving an exponential number of constraints.Comment: Appears in: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017). 39 page
    corecore